Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.333
Filtrar
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 473-479, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565515

RESUMO

OBJECTIVE: To summarize the clinical and genetic characteristics, treatment and prognosis of four children with Steroid-resistant nephrotic syndrome (SRNS) due to variants of TRPC6 gene. METHODS: Clinical data of four children with SRNS admitted to Children's Hospital Affiliated to Zhengzhou University between May 2020 and August 2022 were collected. Peripheral blood samples were collected from the children and their parents, and whole exome sequencing was carried out. Sanger sequencing was used to verify the pathogenicity of the candidate variants among the children and their parents. RESULTS: All of the four children were found to harbor heterozygous variants of the TRPC6 gene, including c.523C>T (p.R175W), c.1327T>A (p.F443I), c.430G>C (p.E144Q) (unreported previously), and c.523C>T (p.R175W), which were all missense variants. Two of the children have shown a simple type, whilst two have shown a nephritis type, none had extrarenal phenotype. Comprehensive renal pathology of three children revealed focal segmental glomerulosclerosis (FSGS). Two children were treated with steroids combined with calcineurin inhibitors (CNIs), among whom one showed significant improvement in symptoms. CONCLUSION: Discoveries of the novel c.430G>C variant and the new SRNS phenotype of the c.1327T>A variant have expanded the mutational and phenotypic spectrum of the TRPC6 gene, which has provided a reference for clinical diagnosis and genetic counseling for the families.


Assuntos
Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Criança , Humanos , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/diagnóstico , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/uso terapêutico , Fenótipo , Rim , Genótipo , Mutação , Glomerulosclerose Segmentar e Focal/genética
2.
Zhonghua Yi Xue Za Zhi ; 104(16): 1360-1362, 2024 Apr 23.
Artigo em Chinês | MEDLINE | ID: mdl-38644284

RESUMO

Primary membranous nephropathy (PMN) is one of the most frequent pathological subtypes of nephrotic syndrome in adults. The use of genome-wide association study (GWAS) technology has propelled the transition from conventional medicine to precision medicine, offering a fresh perspective for comprehending the pathogenesis of PMN and individual variations in greater detail. Furthermore, GWAS will aid in clinical translation, laying a firm foundation for the precise diagnosis and treatment of PMN.


Assuntos
Estudo de Associação Genômica Ampla , Glomerulonefrite Membranosa , Glomerulonefrite Membranosa/genética , Humanos , Síndrome Nefrótica/genética
3.
Ital J Pediatr ; 50(1): 85, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654395

RESUMO

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) are monogenic in some cases, however, there are still no clear guidelines on genetic testing in the clinical practice of SRNS in children. METHODS: Three hundred thirty-two children were diagnosed with SRNS, and all children underwent genetic testing, including gene panels and/or whole-exome/genome sequencing (WES/WGS), during treatment. We analysed the relationship between clinical manifestation and genotype, and compared different genetic testing methods' detection rates and prices. RESULTS: In this study, 30.12% (100/332) of children diagnosed with SRNS had monogenic causes of the disease. With 33.7% (122/332) of children achieving complete remission, 88.5% (108/122) received steroids combined with tacrolimus (TAC). In detectability, WES increased by 8.69% (4/46) on gene panel testing, while WGS increased by 4.27% (5/117) on WES, and WES was approximately 1/7 of the price of WGS for every further 1% increase in pathogenicity. CONCLUSIONS: We verified that steroids combined with TAC were the most effective option in paediatric SRNS. In detection efficiency, we found that WGS was the highest, followed by WES. The panel was the lowest, but the most cost-effective method when considering the economic-benefit ratio, and thus it should be recommended first in SRNS.


Assuntos
Testes Genéticos , Síndrome Nefrótica , Humanos , Síndrome Nefrótica/genética , Síndrome Nefrótica/tratamento farmacológico , Criança , Testes Genéticos/métodos , Masculino , Feminino , Pré-Escolar , Lactente , Resistência a Medicamentos/genética , Adolescente , Tacrolimo/uso terapêutico , Estudos Retrospectivos , Sequenciamento do Exoma
4.
Kidney Int ; 105(4): 663-665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519231

RESUMO

In the current issue, Kuzmuk et al. offer a therapeutic option for patients with NPHS2 R138Q-associated nephrotic syndrome. For the first time in hereditary podocytopathies, this is offered by restoring the membrane targeting of a pathogenic protein. The idea that it is enough to liberate podocin from the trap of keratin 8, a key member of endoplasmic-reticulum-associated protein degradation complex, was brilliantly recognized based on former results obtained in cystic fibrosis.


Assuntos
Queratinas , Síndrome Nefrótica , Humanos , Queratinas/uso terapêutico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Mutação
5.
BMC Nephrol ; 25(1): 87, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448817

RESUMO

BACKGROUND: This article reports an extremely rare case of lipoprotein glomerulopathy (LPG) with apolipoprotein E gene (APOE) Chicago mutation in a young Chinese male. Only five cases or families with APOE Chicago mutations have been reported in the literature. CASE PRESENTATION: The young male patient is manifested with nephrotic syndrome, accompanied by hyperlipidemia with a preferable increase in triglycerides and elevated ApoE level. Renal biopsy of the patient showed highly dilated glomerular capillaries filled with vacuolar lipids, segmentally fused podocyte foot processes, vacuolar degeneration of renal tubular epithelial cells and absence of electron-dense material, which indicates the diagnosis of LPG. Whole-exome gene sequencing identified the heterozygous mutation of NM_000041.4:c.494G > C (p.Arg165Pro), which is in the exon 4 of the APOE gene and also known as APOE Chicago mutation, a rare mutation of LPG. Further family pedigree gene analysis clarified that the mutation was inherited from the patient's mother, who does not have high ApoE levels or renal manifestations. This is also consistent with the incomplete penetrance of APOE gene mutations in LPG. Under lipid-lowering treatments, including a low-fat diet and fenofibrate, the patient's urinary protein was partially controlled, and the albumin level was recovered. CONCLUSION: Patients with nephrotic syndrome and elevated ApoE levels should be prompted into renal biopsy to avoid delay of appropriate treatment and unnecessary use of glucocorticoids. This case of LPG was diagnosed by renal biopsy and further verified with genetic sequencing. The timely diagnosis and treatment improved the patient's symptoms. This case is one of only six reported LPG cases or families with APOE Chicago mutation in the world.


Assuntos
Nefropatias , Síndrome Nefrótica , Humanos , Masculino , Apolipoproteínas E/genética , Chicago , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/genética
7.
Physiol Rep ; 12(3): e15932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307723

RESUMO

As the molecular mechanism of nephrotic syndrome remains largely undiscovered, patients continue to be exposed to the pros and cons of uniform glucocorticoid treatment. We explored whether the exposure of in vitro-cultivated podocytes to sera from children with steroid-sensitive or steroid-resistant nephrotic syndrome induces differences in gene expression profiles, which could help to elucidate the pathogenesis of the steroid response. Human immortalized podocytes were cultivated with patient sera for 3 days. After cell lysis, RNA extraction, 3'-mRNA libraries were prepared and sequenced. There were 34 significantly upregulated and 14 downregulated genes (fold difference <0.5 and >2.0, respectively, and false discovery rate-corrected p < 0.05) and 22 significantly upregulated and 6 downregulated pathways (false discovery rate-corrected p < 0.01) in the steroid-sensitive (n = 9) versus steroid-resistant group (n = 4). The observed pathways included upregulated redox reactions, DNA repair, mitosis, protein translation and downregulated cholesterol biosynthesis. Sera from children with nephrotic syndrome induce disease subtype-specific transcriptome changes in human podocytes in vitro. However, further exploration of a larger cohort is needed to verify whether clinically distinct types of nephrotic syndrome or disease activity may be differentiated by specific transcriptomic profiles and whether this information may help to elucidate the pathogenesis of the steroid response.


Assuntos
Síndrome Nefrótica , Podócitos , Criança , Humanos , Síndrome Nefrótica/genética , Podócitos/metabolismo , Transcriptoma , Glucocorticoides/farmacologia , Esteroides/metabolismo
8.
Nat Commun ; 15(1): 1241, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336808

RESUMO

Paraneoplastic syndromes occur in cancer patients and originate from dysfunction of organs at a distance from the tumor or its metastasis. A wide range of organs can be affected in paraneoplastic syndromes; however, the pathological mechanisms by which tumors influence host organs are poorly understood. Recent studies in the fly uncovered that tumor secreted factors target host organs, leading to pathological effects. In this study, using a Drosophila gut tumor model, we characterize a mechanism of tumor-induced kidney dysfunction. Specifically, we find that Pvf1, a PDGF/VEGF signaling ligand, secreted by gut tumors activates the PvR/JNK/Jra signaling pathway in the principal cells of the kidney, leading to mis-expression of renal genes and paraneoplastic renal syndrome-like phenotypes. Our study describes an important mechanism by which gut tumors perturb the function of the kidney, which might be of clinical relevance for the treatment of paraneoplastic syndromes.


Assuntos
Proteínas de Drosophila , Síndrome Nefrótica , Síndromes Paraneoplásicas , Animais , Humanos , Drosophila/metabolismo , Síndrome Nefrótica/genética , Síndromes Paraneoplásicas/terapia , Rim/metabolismo , Transdução de Sinais , Proteínas do Ovo/metabolismo , Proteínas de Drosophila/metabolismo
9.
Exp Cell Res ; 435(2): 113931, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253280

RESUMO

The mortality rate linked with nephrotic syndrome (NS) is quite high. The renal tubular injury influences the response of NS patients to steroid treatment. KN motif and ankyrin repeat domains 2 (KANK2) regulates actin polymerization, which is required for renal tubular cells to maintain their function. In this study, we found that the levels of KANK2 in patients with NS were considerably lower than those in healthy controls, especially in NS patients with acute kidney injury (AKI). To get a deeper understanding of the KANK2 transcriptional control mechanism, the core promoter region of the KANK2 gene was identified. KANK2 was further found to be positively regulated by E2F Transcription Factor 1 (E2F1), Transcription Factor AP-2 Gamma (TFAP2C), and Nuclear Respiratory Factor 1 (NRF1), both at mRNA and protein levels. Knocking down E2F1, TFAP2C, or NRF1 deformed the cytoskeleton of renal tubular cells and reduced F-actin content. EMSA and ChIP assays confirmed that all three transcription factors could bind to the upstream promoter transcription site of KANK2 to transactivate KANK2 in renal tubular epithelial cells. Our study suggests that E2F1, TFAP2C, and NRF1 play essential roles in regulating the KANK2 transcription, therefore shedding fresh light on the development of putative therapeutic options for the treatment of NS patients.


Assuntos
Síndrome Nefrótica , Fator 1 Nuclear Respiratório , Humanos , Fator 1 Nuclear Respiratório/metabolismo , Síndrome Nefrótica/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição AP-2/genética
10.
Pathol Res Pract ; 254: 155092, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218042

RESUMO

Schimke immuno-osseous dysplasia (SIOD) is a rare multi-system condition caused by biallelic loss-of-function mutations in the SMARCAL1 gene. This disorder is characterized by disproportionate growth failure, T-cell deficiency, and renal dysfunction. Pathogenic variants in the SMARCAL1 gene have been reported in only approximately half of SIOD-affected individuals. Among these alterations, nonsense and frameshift mutations generally lead to a severe phenotype with early onset. In this study, we identified novel mutations in an Iranian patient with SIOD. A 4-year-old girl with developmental delay and facial dysmorphism was referred to our center for molecular diagnosis. We applied whole-exome and Sanger sequencing for co-segregation analysis. Subsequently, bioinformatic analysis was performed to assess the pathogenic effects of the variants and their post-transcriptional effects. We discovered two novel mutations (c.2281delT and c.2283delA) in exon 15 of the SMARCAL1 gene, resulting in a truncated protein with a loss of 193 amino acids (p.S761Rfs*1). Variant effect predictors indicated that these variants are pathogenic, and multi-sequence alignments revealed high conservation of this region among different species. Given that our patient exhibited severe a phenotype and passed away soon after receiving a definitive molecular diagnosis, we propose that the loss of the helicase C-terminal domain in the deleted part of SMARCAL1 may lead to the severe form of SIOD. Besides, the combination of growth retardation and bone abnormalities also plays a crucial role in the early diagnosis of the disease.


Assuntos
Arteriosclerose , Síndromes de Imunodeficiência , Síndrome Nefrótica , Osteocondrodisplasias , Doenças da Imunodeficiência Primária , Embolia Pulmonar , Feminino , Humanos , Pré-Escolar , Irã (Geográfico) , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/complicações , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/metabolismo , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/genética , Síndrome Nefrótica/complicações , DNA Helicases/genética
11.
Hum Mol Genet ; 33(8): 667-676, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38224683

RESUMO

More than 60 monogenic genes mutated in steroid-resistant nephrotic syndrome (SRNS) have been identified. Our previous study found that mutations in nucleoporin 160 kD (NUP160) are implicated in SRNS. The NUP160 gene encodes a component of the nuclear pore complex. Recently, two siblings with homozygous NUP160 mutations presented with SRNS and a nervous system disorder. However, replication of nephrotic syndrome (NS)-associated phenotypes in a mammalian model following loss of Nup160 is needed to prove that NUP160 mutations cause SRNS. Here, we generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse model using CRISPR/Cas9 and Cre/loxP technologies. We investigated NS-associated phenotypes in these Nup160podKO mice. We verified efficient abrogation of Nup160 in Nup160podKO mice at both the DNA and protein levels. We showed that Nup160podKO mice develop typical signs of NS. Nup160podKO mice exhibited progression of proteinuria to average albumin/creatinine ratio (ACR) levels of 15.06 ± 2.71 mg/mg at 26 weeks, and had lower serum albumin levels of 13.13 ± 1.34 g/l at 30 weeks. Littermate control mice had urinary ACR mean values of 0.03 mg/mg and serum albumin values of 22.89 ± 0.34 g/l at the corresponding ages. Further, Nup160podKO mice exhibited glomerulosclerosis compared with littermate control mice. Podocyte-specific Nup160 knockout in mice led to NS and glomerulosclerosis. Thus, our findings strongly support that mutations in NUP160 cause SRNS. The newly generated Nup160podKO mice are a reliable mammalian model for future study of the pathogenesis of NUP160-associated SRNS.


Assuntos
Síndrome Nefrótica , Podócitos , Animais , Camundongos , Camundongos Knockout , Mutação , Síndrome Nefrótica/genética , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/patologia , Proteinúria/genética , Albumina Sérica/genética
12.
Kidney Int ; 105(2): 218-230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245210

RESUMO

Glomerular diseases are classified using a descriptive taxonomy that is not reflective of the heterogeneous underlying molecular drivers. This limits not only diagnostic and therapeutic patient management, but also impacts clinical trials evaluating targeted interventions. The Nephrotic Syndrome Study Network (NEPTUNE) is poised to address these challenges. The study has enrolled >850 pediatric and adult patients with proteinuric glomerular diseases who have contributed to deep clinical, histologic, genetic, and molecular profiles linked to long-term outcomes. The NEPTUNE Knowledge Network, comprising combined, multiscalar data sets, captures each participant's molecular disease processes at the time of kidney biopsy. In this editorial, we describe the design and implementation of NEPTUNE Match, which bridges a basic science discovery pipeline with targeted clinical trials. Noninvasive biomarkers have been developed for real-time pathway analyses. A Molecular Nephrology Board reviews the pathway maps together with clinical, laboratory, and histopathologic data assembled for each patient to compile a Match report that estimates the fit between the specific molecular disease pathway(s) identified in an individual patient and proposed clinical trials. The NEPTUNE Match report is communicated using established protocols to the patient and the attending nephrologist for use in their selection of available clinical trials. NEPTUNE Match represents the first application of precision medicine in nephrology with the aim of developing targeted therapies and providing the right medication for each patient with primary glomerular disease.


Assuntos
Nefropatias , Síndrome Nefrótica , Adulto , Criança , Humanos , Biomarcadores , Ensaios Clínicos como Assunto , Glomérulos Renais/patologia , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/genética , Síndrome Nefrótica/terapia
14.
Pediatr Nephrol ; 39(2): 455-461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37670083

RESUMO

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of kidney failure in children and adults under the age of 20 years. Previously, we were able to detect by exome sequencing (ES) a known monogenic cause of SRNS in 25-30% of affected families. However, ES falls short of detecting copy number variants (CNV). Therefore, we hypothesized that causal CNVs could be detected in a large SRNS cohort. METHODS: We performed genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on a cohort of 138 SRNS families, in whom we previously did not identify a genetic cause through ES. We evaluated ES and CNV data for variants in 60 known SRNS genes and in 13 genes in which variants are known to cause a phenocopy of SRNS. We applied previously published, predefined criteria for CNV evaluation. RESULTS: We detected a novel CNV in two genes in 2 out of 138 families (1.5%). The 9,673 bp homozygous deletion in PLCE1 and the 6,790 bp homozygous deletion in NPHS2 were confirmed across the breakpoints by PCR and Sanger sequencing. CONCLUSIONS: We confirmed that CNV analysis can identify the genetic cause in SRNS families that remained unsolved after ES. Though the rate of detected CNVs is minor, CNV analysis can be used when there are no other genetic causes identified. Causative CNVs are less common in SRNS than in other monogenic kidney diseases, such as congenital anomalies of the kidneys and urinary tract, where the detection rate was 5.3%. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Síndrome Nefrótica , Adulto , Criança , Humanos , Adulto Jovem , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Predisposição Genética para Doença , Homozigoto , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/congênito , Deleção de Sequência
16.
Saudi J Kidney Dis Transpl ; 34(2): 191-195, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38146730

RESUMO

Information on the genetic profile of congenital nephrotic syndrome (CNS) from India is scarce. The management of CNS is largely supportive of the setting of developing countries, mainly via the administration of intravenous albumin infusions, angiotensin-converting enzyme inhibitors, and levothyroxine. Inadequate infrastructure and management facilities, including genetic analyses, further hamper the outcome. These infants may progress to end-stage renal disease, and mortality is high in infancy. Here, we report a case series of four infants (aged 14-60 days) with CNS from our center with genetic mutations (including mutations in the NPHS1 and LAMB2 genes) that were not described in previous reports from India. Although responsiveness to enalapril has been documented in anecdotal reports of NPHS1 mutations, our case series of four infants did not exhibit any response to enalapril. Our case series adds to the existing literature regarding the genetic profile of CNS in India.


Assuntos
Síndrome Nefrótica , Lactente , Humanos , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Mutação , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Enalapril/uso terapêutico
17.
Genes (Basel) ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136965

RESUMO

Pathogenic gene variants encoding nuclear pore complex (NPC) proteins were previously implicated in the pathogenesis of steroid-resistant nephrotic syndrome (SRNS). The NUP85 gene, encoding nucleoporin, is related to a very rare form of SRNS with limited genotype-phenotype information. We identified an Italian boy affected with an SRNS associated with severe neurodevelopmental impairment characterized by microcephaly, axial hypotonia, lack of achievement of motor milestones, and refractory seizures with an associated hypsarrhythmic pattern on electroencephalography. Brain magnetic resonance imaging (MRI) showed hypoplasia of the corpus callosum and a simplified gyration of the cerebral cortex. Since the age of 3 years, the boy was followed up at our Pediatric Nephrology Department for an SRNS, with a focal segmental glomerulosclerosis at renal biopsy. The boy died 32 months after SRNS onset, and a Whole-Exome Sequencing analysis revealed a novel compound heterozygous variant in NUP85 (NM_024844.5): 611T>A (p.Val204Glu), c.1904T>G (p.Leu635Arg), inherited from the father and mother, respectively. We delineated the clinical phenotypes of NUP85-related disorders, reviewed the affected individuals so far reported in the literature, and overall expanded both the phenotypic and the molecular spectrum associated with this ultra-rare genetic condition. Our study suggests a potential occurrence of severe neurological phenotypes as part of the NUP85-related clinical spectrum and highlights an important involvement of nucleoporin in brain developmental processes and neurological function.


Assuntos
Neurônios , Podócitos , Criança , Pré-Escolar , Humanos , Masculino , Mutação , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia , Neurônios/metabolismo , Neurônios/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Podócitos/metabolismo , Podócitos/patologia
18.
BMC Nephrol ; 24(1): 378, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114895

RESUMO

The most common genetic causes of steroid-resistant nephrotic syndrome (SRNS) are mutations in the NPHS2 gene, which encodes the cholesterol-binding, lipid-raft associated protein podocin. Mass spectrometry and cDNA sequencing revealed the existence of a second shorter isoform in the human kidney in addition to the well-studied canonical full-length protein. Distinct subcellular localization of the shorter isoform that lacks part of the conserved PHB domain suggested a physiological role. Here, we analyzed whether this protein can substitute for the canonical full-length protein. The short isoform of podocin is not found in other organisms except humans. We therefore analysed a mouse line expressing the equivalent podocin isoform (podocinΔexon5) by CRISPR/Cas-mediated genome editing. We characterized the phenotype of these mice expressing podocinΔexon5 and used targeted mass spectrometry and qPCR to compare protein and mRNA levels of podocinwildtype and podocinΔexon5. After immunolabeling slit diaphragm components, STED microscopy was applied to visualize alterations of the podocytes' foot process morphology.Mice homozygous for podocinΔexon5 were born heavily albuminuric and did not survive past the first 24 h after birth. Targeted mass spectrometry revealed massively decreased protein levels of podocinΔexon5, whereas mRNA abundance was not different from the canonical form of podocin. STED microscopy revealed the complete absence of podocin at the podocytes' slit diaphragm and severe morphological alterations of podocyte foot processes. Mice heterozygous for podocinΔexon5 were phenotypically and morphologically unaffected despite decreased podocin and nephrin protein levels.The murine equivalent to the human short isoform of podocin cannot stabilize the lipid-protein complex at the podocyte slit diaphragm. Reduction of podocin levels at the site of the slit diaphragm complex has a detrimental effect on podocyte function and morphology. It is associated with decreased protein abundance of nephrin, the central component of the filtration-slit forming slit diaphragm protein complex.


Assuntos
Síndrome Nefrótica , Podócitos , Humanos , Animais , Camundongos , Podócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , RNA Mensageiro/metabolismo
19.
G Ital Nefrol ; 40(6)2023 Dec 22.
Artigo em Italiano | MEDLINE | ID: mdl-38156539

RESUMO

In the last decades, our understanding of the genetic disorders of inherited podocytopathies has advanced immensely; this has been possible thanks to the development of next-generation sequencing technologies that offer the possibility to evaluate targeted genes at a lower cost than in the past. Identifying new genetic mutations has helped to recognize the key role of the podocyte in the health of the glomerular filter and to understand the mechanisms that regulate the cell biology and pathology of the podocyte. Here we describe a patient with congenital nephrotic syndrome due to a mutation in PODXL. This gene encodes podocalyxin, a podocyte-specific surface sialomucin known to maintain the characteristic architecture of the foot processes and the patency of the filtration slits.


Assuntos
Nefropatias , Síndrome Nefrótica , Podócitos , Humanos , Nefropatias/metabolismo , Glomérulos Renais/patologia , Síndrome Nefrótica/genética , Podócitos/metabolismo
20.
J Trop Pediatr ; 70(1)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38110745

RESUMO

OBJECTIVES: TNF-α is a pro-inflammatory cytokine that has been implicated in many inflammatory diseases, but its association with idiopathic nephrotic syndrome (INS) is poorly understood. This study looked for an association of TNF-α gene polymorphisms with INS, as well as its effect on steroid responsiveness among Kuwaiti Arab children. METHODS: Genotypes of the TNF-a gene polymorphisms were analyzed using polymerase chain reaction-restriction fragment length polymorphism in 151 INS Kuwaiti Arab patients and 64 age and sex-matched controls. Clinical data of all subjects were reviewed. RESULTS: The heterozygous AG genotype was detected in 8.6% of INS patients compared 23.4% of the controls (p < 0.01). Comparing steroid responsiveness, AA genotype was significantly more common in steroid-sensitive nephrotic syndrome (SSNS) cases than steroid-resistant nephrotic syndrome (SRNS) patients (p = 0.001). However, AG genotype was significantly more common in SRNS patients compared to the SSNS cases (p = 0.001). No difference was found between these two subgroups in the GG genotype frequency. CONCLUSION: AG genotype of TNF-a gene polymorphisms may be considered a suitable marker for INS disease among Kuwaiti children. Both AA and AG genotypes may be useful in predicting steroid responsiveness among these cases of Arab ethnicity. The findings might open the era for the use of genetic markers in the early treatment of NS.


Assuntos
Síndrome Nefrótica , Fator de Necrose Tumoral alfa , Criança , Humanos , Árabes/genética , Genótipo , Kuweit/epidemiologia , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Polimorfismo Genético , Esteroides/uso terapêutico , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...